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Abstract

We describe a model for assessing the reliability of complex systems comprised of multiple com-

ponents. Components of the system are assumed to be linked together through a known reliability

diagram (i.e., a fault tree). Both serial and parallel configurations of subcomponents are permit-

ted. Novel features of this model are the natural manner in which failure data collected at either

the component or subcomponent level can be incorporated into the posterior distribution and the

pooling of failure information across similar subcomponents within the same or related systems. An

example involving the performance of an anti-aircraft missile defense system is used to illustrate the

methodology.

1 Background

In estimating the reliability of a complex system, it often happens that test data and prior
expert opinion are available at system, subsystem, and component levels. Methodology for
combining these various sources of information in a consistent fashion has proven problematic,
and the goal of this article is the description of a Bayesian heirarchical model that resolves this
difficulty. For simplicity, we restrict discussion to systems in which components or subcom-
ponents may be regarded as either functional or not. Extensions to more general situations
are briefly examined at the end of the article.

To provide context, it is useful to begin with a review of related research in Bayesian sys-
tem reliability. Most relevant to the model considered here are the papers by Martz, Waller
and Fickas (1988) and Martz and Waller (1990), where complex systems, comprised of se-
ries and parallel subcomponents, were modeled using beta priors and binomial likelihoods at
component, subsystem and system levels. Within this framework, an “induced” higher-level
prior was obtained by propagating lower-level posteriors up through the system fault diagram,
and combining these posteriors with “native” higher-level priors to obtain an “induced” prior
at the next system level. These “induced” priors were approximated by beta distributions
using a methods-of-moments type procedure. The combination of native priors and posterior
distributions obtained from lower-level system data, both of which were expressed as beta
distributions, was accomplished by expressing the resulting induced priors as a beta distribu-
tions with parameters representing a weighted average of the constituent beta densities. This
process was propogated through higher and higher system levels until an approximation to
the joint posterior distribution on the total system reliability was obtained.

Many reliability models do not consider prior expert opinion and data at multiple system
levels. Springer and Thompson (1966, 1969), and Tang, Tang and Moskowitz (1994, 1997)
provide exact or approximated system reliability distributions obtained by propagating the
component posteriors through the system structure. Thompson and Chang (1975), Chang
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and Thompson (1976), Lampkin and Winterbottom (1983) and Winterbottom (1994) use
approximations for exponential lifetimes rather than binomial data. Others propose methods
for evaluating or bounding moments of the system reliability posterior distribution (Cole
(1975), Mastran (1976), Dostal and Iannuzzelli (1977), Mastran and Singpurwalla (1978),
Barlow (1985), Natvig and Eide (1987), Soman and Misra (1993)). These moments can also
be used in the beta approximations employed by Martz, Waller and Fickas (1988) and Martz
and Waller (1990). Soman and Misra (1993) proposed a distributional approximation based
on a maximum entropy principle.

Numerous models have, of course, also been proposed for modeling non-binomial data.
Thompson and Chang (1975), Chang and Thompson (1976), Mastran (1976), Mastran and
Singpurwalla (1978), Lampkin and Winterbottom (1983), and Winterbottom (1994) consider
models for exponential lifetime data. Hulting and Robinson (1990, 1994) examine Weibull
models. Poisson count data, where the number of units failing in a specified period, are
discussed by Hulting and Robinson (1990), Sharma and Bhutani (1992), Hulting and Robinson
(1994), Sharma and Bhutani (1994), and Martz and Baggerly (1997). Currit and Singpurwalla
(1988) and Bergman and Ringi (1997a) consider dependence of components due to a common
operating environment. Bergman and Ringi (1997b) incorporate data from non-identical
environments.

Bier (1994) addresses the issue of aggregation error. Specifically, a logical difficulty arises
when combining prior information data at distinct component levels. Bier asserts that there
are basically two mechanisms available for overcoming this difficulty: (1) update component
priors with component data and propagate up to get a system posterior, or (2) propagate
component priors up to a system prior and update with system data to get system posterior.
Unfortunately, these two methods yield distinct solutions. In the methodology introduced in
this paper, we remedy the disparate solutions.

In Section 2 we introduce a Bayesian hierarchical modeling approach to estimation of
system reliability. In Section 3 the computational algorthms used in estimation are proposed.
The application of our approach to an anti-aircraft missile problem is presented in Section 4.
We discuss the methodology and present future research possibilities in Section 5.

2 Methodology

To illustrate the model proposed here, consider Figure 1, which depicts a fault tree for an anti-
aircraft missile system. The general features illustrated in this figure include the composition
of a system by multiple subsystems, and the composition of these subsystems by further
subsystems and components. In general, binomial data and prior expert opinion will be
available at different system levels, and our goals in modeling such systems are to evaluate the
probability that a missile drawn at random from the stockpile population functions, to provide
stockpile managers with information regarding the necessity for conducting full-system tests–
which can be very expensive–to evaluate this probability, and to identify subsystems for which
additional data might best be collected to improve estimation of overall system reliability.

Four sources of data are considered here. The first is data collected from actual compo-
nent or subsystem tests and is here assumed to take the form of binomial observations. In
degradation models, the age of the component at the time of the test may also be available.
Next, expert opinion regarding the probability that a specific component or subsystem fails
may be available. A third, less precise source of information is expert opinion stating that a
group of components in a given system or in related systems have similar failure probabilities.
For example, in the missile system depicted above, an expert may assert that the reliability
of the missile battery is “similar” to the reliability of a battery in a related missile system, or
that reliabilities of the eject and flight motors are similar. However, the expert may not have
knowledge regarding the specific probability that any component within a group of similar
components functions. Finally, we wish to model the fact that “terminal nodes” (i.e., com-
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ponents at the bottom of the fault tree having no subcomponents themselves) may also be
grouped into sets of comparably reliable components without the guidance of actual expert
opinion.

To model these four sources of information, we first assume that the failure probabilities
of components in distinct branches of the fault tree are conditionally independent given their
unknown success probabilities, and that the success of the system requires successful func-
tioning of all components. Extensions to systems that include redundant components or in
which component failures are not independent are discussed in the summary. Nodes in the
reliability diagram are labeled Ci, where i indicates the component or subcomponent index.
The function a(i) provides the “parent” component (or system) containing (sub)component
i, while g(i,m) indicates the group of components that expert m asserts have similar failure
rates. We let pi denote the probability that component Ci functions when the missile is fired.
The set of components for which test data is available is denoted by S0, and within this set xi

denotes the number of times component i functioned successfully in ni trials. For simplicity of
exposition, aging effects are not considered, making a simple binomial likelihood appropriate
for modeling (xi, ni).

The incorporation of expert opinion can play a potentially important role in assessing the
reliability of the system as a whole, particularly in large complex systems for which data
collected on individual subcomponents may be sparse. Furthermore, expert opinion may
be available from several experts, and the quality of information obtained from each expert
may vary. To model expert opinion, we therefore assume that the prior density obtained
from expert m concerning a specific value of pi takes the form of a beta density, and let the
set of combinations of (i,m) for which expert opinion is available be denoted by S1. More
specifically, we assume that the net contribution in the joint posterior density arising from
such prior information is

Γ(Nm + 2)
Γ(Nmπi,m + 1)Γ[Nm(1 − πi,m) + 1]

p
Nmπi,m

i (1 − pi)Nm(1−πi,m)

≡ B(pi ; Nmπi,m + 1, Nm(1 − πi,m) + 1). (1)

In (1), πi,m represents expert m’s point estimate of pi, and Nm represents the precision
of expert m. For concreteness, we assume that each expert precision parameter Nm is drawn
from a gamma density with known parameters αm and βm, parameterized here as

G(Nm ; αm, βm) =
βαm

m

Γ(αm)
Nαm−1

m exp(−βmNm). (2)

Note that expert opinion is assumed to take the form of a binomial likelihood with a maximum
at πi,m – this convention eliminates the possibility that the joint density specified on all model
parameters is improper, and also implicitly handles the aggregation problem identified by Bier
(1994) by simply treating expert opinion has “data.”

When prior information regarding component success probabilities is unknown, but expert
groupings of components are available, (1) is augmented by assuming that πi,m is replaced
by ρm,g, where ρm,g represents the common, but unknown, success probability assigned by
expert m to components in group g (i.e., components for which g(i,m) = g). The contribution
to the joint posterior distribution on model parameters from such information is assumed to
take the form ∏

(i,m)∈S2

B(pi ; Kmρm,g + 1,Km(1 − ρm,g) + 1). (3)

Here, S2 denotes the combinations of (i,m) for which such grouping information is available.
As in (1), the parameter Km is assumed to be drawn a priori from a gamma density having

parameters ζm and ηm. The prior success parameter ρm,g is assumed to be drawn from a beta
density with known parameters δg,m and εg,m, respectively.
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Finally, for leaves in the fault tree a hierarchical prior specification may be obtained by
further assuming that each terminal node’s success probability is drawn from a beta density
with parameters J0	0 and J0(1 − 	0). The set of terminal nodes in denoted by S3.

For notational simplicity, we assume that all terminal nodes are, a priori, exchangeable,
but this restriction may be relaxed by using expert judgment to group the terminal nodes in
a manner similar to that used in the specification of (3). In that case, J0 and 	0 would be
subscripted with the appropriate prior group. The parameter J0 is assumed drawn from a
gamma density with parameters τ0 and φ0; 	0 is assumed a priori to be drawn from a beta
density with parameters ψ0 and ω0.

As discussed in the previous section, combining data and prior information at different
levels within a reliability diagram has often proven problematic, both from the perspectives
of computational tractability and model consistency. Our solution to this conundrum is to
simply re-express non-terminal node probabilities in terms of terminal node probabilities using
deterministic relations derived from an examination of the system reliability diagram. For
example, from Figure 1, it is evident that the probability that the guided missile functions,
p7, is equal to the product of the probabilities that the warhead (p10), fuze (p11), flight motor
(p12), eject motor (p13), airframe (p14), missile battery (p15), control assembly (p16), and
guidance assembly(p17) all function. Thus,

p7 =
17∏

i=10

pi (4)

and, for example, the prior specification on p7 is interpreted as a prior specification on this
product:

f7,m(p7 |π7,m,Km) ≡ f7,m(
17∏

i=10

pi |π7,m, Nm) (5)

∝
[

17∏
i=10

pi

]Nmπ7,m
[
1 −

17∏
i=10

pi

]Nm(1−π7,m)

. (6)

Note that variable substitutions based on the reliability diagram do not uniquely identify
a joint distribution on the terminal node probabilities, in this case p10 through p17. However,
together with the assumption that the distributions of these probabilities are defined with
respect to Lesbesque measure on the unit interval and given the hierarchical specification,
such substitutions do yield a uniquely defined joint distribution on these parameters.

Combining these assumptions leads to a joint posterior distribution on all model parameters
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proportional to

[p,N,ρ,K,�,J |x,n,π,α,β, ζ,η, δ, ε, τ ,φ,ψ,ω] ∝
×

∏
i∈S0

pxi
i (1 − pi)ni ×

∏
m:∃(i,m)∈S2

G(Km ; ζm, ηm)

×
∏

(i,m)∈S1

B(pi ; Nmπi,m + 1, Nm(1 − πi,m) + 1) (7)

×
∏

(i,m)∈S2

B(pi ; Kmρm,g + 1,Km(1 − ρm,g) + 1) (8)

×
∏
i∈S3

B(pi ; J0	0, J0(1 − 	0) + 1) (9)

×
∏

m:∃(i,m)∈S2

B(ρm,g ; δm, εm) × B(	0 ; ψ0, ω0)

× G(J0 ; τ0, ψ0) ×
∏

m:∃(i,m)∈S1

G(Nm ; αm, βm). (10)

In this expression, values of non-terminal node probabilities are assumed to be expressed in
terms of the appropriate functions of terminal node probabilities, as defined from the system
fault tree.

An examination of the contributions to the joint posterior distribution arising from the
three types of prior information (7–9) reveal obvious similarities, but there are also important
distinctions between these parameterizations. For example, in (7), the value of Nm represents
the precision of the expert’s opinion, while in (8) and (9), Km and J0 describe the similarity
of items reliabilities within a grouping.

2.1 Hierarchical prior model

The hierarchical prior model on the terminal node probabilities plays a crucial role in rendering
estimates of the overall system reliability insensitive to the level of detail included in the system
fault diagram. As an illustration of this point, consider a simple system comprised of three
components, and suppose that a single binomial observation with 4 successes and 1 failure
is observed at the system level. Then without a hierarchical specification on the component
probabilities and under the model assumptions stated above, the posterior distribution on the
system reliability would be proportional to

(p2p3p4)4(1 − p2p3p4) (11)

where the system reliability, p1, is assumed equal to p2p3p4.
With the implied uniform distribution on p2-p4, the posterior mean of p1 in this model is

0.507. Note that the posterior mean on p1 (with a uniform prior) is .714 when the system
is not decomposed into subsystems. And, of course, this bias becomes more severe as the
number of subcomponents in the system increases.

In contrast, the hierarchical prior specification on p2-p4 with ψ0 = ω0 = 0.5 results in a
posterior mean of 0.718 for p1, while the same specification with ψ0 = ω0 = 1.0 results in a
posterior mean of 0.687. Both results are relatively insensitive to the number of subcompo-
nents specied for the system.

3 Estimation strategies

The joint distribution on model parameters specied in (10) does not lend itself to analytical
evaluation of the system or component reliabilities. However, a componentwise Metropolis-
Hastings algorithm can be implemented in relatively straightforward way. In our version of
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such a scheme, we used a random-walk Metropolis-Hastings algorithm with Gaussian proposal
densities specified on the logistic scale for the terminal node probabilities, for 	0 and for
ρm,g. Precision parameters were similarly updated using a random-walk Metropolis-Hastings
scheme with Gaussian increments specified on the logarithmic scale. The resulting Metropolis-
Hastings algorithms was implemented using a general-purpose Java MCMC system developed
at Los Alamos National Laboratory. (Graves, 2001).

4 Analysis of anti-aircraft missile data

Anti-aircraft missiles are intended to provide defense from attacking enemy aircraft. Anti-
aircraft missiles take on many forms, some being launched from the ground and others
launched from the air, and yet others launched from the decks of ships. The United States has
over 15 different anti-aircraft missiles in its current arsenal. In each case there are stockpiles
of these weapons, of varying sizes, which are stored in the event of certain types of conflicts.
One important consideration in these stockpiles is the probability that a randomly selected
unit will perform its intended task to success. This probability can be framed in terms of a
reliability problem.

These weapons are made up of several components as well as several subsystems. An
example of components and subsystems that make up a generic anti-aircraft missile system
is shown in Figure 1. Associated with that system are sources of data. Some of these sources
include component tests, subsystem tests, and full system tests. In our example, we had 45
observations on components C4, C5, C6, C11, C12, C13, C15 and C16. We also had 126 obser-
vations on C3, and the bulk of our data, over 1400 observations, were available at the full
system level (C1,0,1). At each of components C2, C7, C8, C9, C10, C14, and C17, no data were
collected.

After discussions with experts on this system, reliability classes were formed as shown in
Figure 1. That is, the reliability classes are indicated by the levels in the reliability fault tree.
Thus, components 10-17 form one class, components 5-9 form another class, and components
2-4 form a class. These classes form the basis for the hierarchical model on the component
reliabilities.

One important consideration for this problem is the uncertainty in reliability estimates
when no data are collected at the full system level. Therefore, our results present two cases:
the case with full system data included and the case with no full system tests.

Applying the model discussed in Section 2, we obtained the reliability posterior distribu-
tions for each of the components and the expert precision parameter. The system reliability
posterior distributions with the system data included and system data excluded are plotted in
Figure 2. We note the agreement between the two posterior distributions (full system tests in-
cluded vs. full system tests excluded). In every case, the 95% HPD region includes essentially
the entire distribution with full system information included. The scales from these plots have
been removed due to classification concerns, but they not extend to the interval (0, 1). Also
of interest is the posterior distribution for the expert precision (Nm). The posterior mean for
this distribution is 12.2. This indicates that the expert’s opinion is worth approximately 12
full system tests. Given the prior mean of 5, we conclude that the expert was reasonably well
calibrated with the system structure and data.

5 Conclusions

The proposed hierarchical model offers several advantages over existing models for system
reliabilities. Among these are the ease of including diverse sources of information at different
levels of the system into the model for overall system reliabilities, a coherent framework for
incorporating multiple sources of prior expert opinion through the treatment of expert opinion
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Figure 2: Posterior distributions for the reliability of the system represented in Figure 1. The black lines
were based on the model that included the full-system flight tests and the dashed lines using only system
level data.
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as (imprecisely-observed) data, and the natural elimination of aggregation errors through the
definition of non-terminal probabilities using the assumed structure of the system fault tree
and terminal node probabilities.

A simplistic form of our hierarchical model for reliability was described in this paper. In
future work we plan to extend this framework to include non-serial systems and to incorporate
degradation models for component reliabilities. Other outstanding issues include the develop-
ment of diagnostics to assess the adequacy of the system diagram in describing the functioning
of the system, and the introduction of models for dependencies between subcomponents within
subsystems.
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